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Chimeric antigen receptor (CAR) T cells

* Chimeric antigen receptor (CAR) T cells are genetically modified T
cells that express a CAR directed against specific tumor antigens. CAR
T cells are able to kill target tumor cells and may result in long-lasting

iImmune responses in Vivo. Carl H. June and Michel Sadelain. Chimeric Antigen
Receptor Therapy. N Engl J Med 2018.

* The rapid development of CAR technologies has led to clinical trials in
hematological cancers and CAR T cells might evolve into a standard

treatment in the next few years. Maude, 2014 ; Davila et al, Sci Tr Med, 2014; Lee et
al, Lancet 2015, Kochenderfer, JCO 2015.
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CAR T CELL THERAPY

First Generation CARs Second Generation CARs
scFv

cD8

€D3t €D3C cD28

D3t

CCRs CCyRs iCARs synNotch

IL-2/1L-15Rs PD-1

The expanding repertoire of synthetic immun®receptors: CARs (first generation TCR mimetics,
second generation providing integrated activating and costimulatory signals; CCRs, chimeric
costimulatory receptor; CCyRs, chimeric cytokine receptors; iCARs, inhibitors of T cell
activation; synNotch, synthetic Notch receptors. Third generation CARs are conceptually similar
to second generation CARs, except for their use of multiple costimulatory components.
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Table 1. Responses to CAR T-Cell Therapy.*

Disease

Leukemia

B-cell acute lymphoblastic
leukemia (in adults)

B-cell acute lymphoblastic
leukemia (in children)

Chronic lymphocytic leu-
kemia

Lymphoma

Diffuse large B-cell lym-
phoma

Follicular lymphoma
Transformed follicular
lymphoma

Refractory multiple myeloma

Solid tumors

Glioblastoma

Pancreatic ductal adeno-
carcinoma

Response
Rate

percent

83-93

68-90

57-71

64-86

71

70-83

25-100

ND

17

Comments

High initial remission rates; unresolved issue is whether
CAR T-cell therapy is definitive therapy or should be
followed by allogeneic hematopoietic stem-cell therapy

Approximately 25% of patients reported to have a relapse
with CD19-negative or CD19-low leukemia; CD22
CAR T cells may improve survival among some pa-
tients with CD19 relapses

Relapse is rare in patients who have a complete response;
ibrutinib appears to increase response rates

Approximately 40-50% of patients reported to have a
durable complete response

At a median follow-up of 28.6 mo, the response was
maintained in 89% of patients who had a response

A total of 3 of 3 patients with transformed follicular lym-
phoma had a complete response

B-cell maturation antigen CAR T cells; stringent complete
response in approximately 25% of patients

In case report from phase 2 study, complete response on
magnetic resonance imaging after intravenous and
cerebrospinal fluid administration of CAR T cells;
response lasted 7.5 mo

In one patient with liver metastasis, CAR T-cell treatment
produced a complete metabolic response in the liver
but was ineffective against the primary pancreatic tumor

Reference

Park et al.,** Davila et al.,*®
Turtle et al.*”

Maude et al.,** Maude et al.,*®
Fry et al.,*® Lee et al.*®

Porter et al.,*! Turtle et al.*?

Turtle et al.,* Kochenderfer
et al.,* Schuster et al.,*
Neelapu et al .

Schuster et al.*
Turtle et al.,* Schuster et al.,**

Neelapu et al.*¢

Alietal.,¥ Fanetal.,*
Berdeja et al.*

Brown et al.*®

Beatty et al.”!

* ND denotes not determined.

June & Sadelain. Chimeric Antigen Receptor Therapy. N Engl J Med 2018.




Table 2. Reported Toxic Effects of CAR T Cells.

CAR Specificity and Adverse Effect
CD19 CAR

B-cell aplasia and hypogammaglobulinemia

Cytokine release syndrome

Dermatitis

Hematophagocytic lymphohistiocytosis and macrophage activation
syndrome

Neurologic effects such as ataxia and aphasia
Cerebral edema
B-cell maturation antigen CAR: the cytokine release syndrome

Mesothelin CAR: anaphylaxis (antibody to murine single-chain variable
fragments)

Carbonic anhydrase IX CAR: cholangitis (on-target)
HER2/neu CAR: lethal cytokine release syndrome

Carcinoembryonic antigen—related cell-adhesion molecule 5 (CEACAMS)
CAR: hemorrhagic colitis (on-target)

Reference

Kochenderfer et al.,’? Kalos et al.’?

Davila et al.,*® Lee et al.,**
Teachey et al.**

Rubin et al.’®

Grupp et al.,*? Porter et al.,*
Teachey et al.**

Brudno and Kochenderfer®”
Gust et al.%8
Riches et al.*®

Maus et al.®°

Lamers et al.®
Morgan et al.®

Thistlethwaite et al.¢?

June & Sadelain. Chimeric Antigen Receptor Therapy. N Engl J Med 2018.
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Apoptotic cells: Mechanisms of Immune modulation
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From Trahtemberg and Mevorach, Frontiers in Immunology 2017



METHODS

* SCID-Bg mice were injected intra-peritoneally with human Hela-
CD19-luciferase cells, apoptotic cells or vehicle, and CD19-CAR T cells

or mock T cells.

 HelLa-CD19 was stably transduced with pLenti-PGK-V5-Luc-Neo and
CAR was prepared using 3" generation CD19-CAR plasmids.

* Luminex was used for measuring cytokine/chemokines levels

* Flow-cytometry and single cell analysis were used to characterize the
macrophages.
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METHODS: SCID WITH HUMAN ABDOMINAL HELA-LUCIFERASE-CD19
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RESULTS: CAR-T SIGNIFICANTLY AMELEIORATES SURVIVAL OF SCID WITH HUMAN ABDOMINAL HELA
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Apoptotic cells (Allocetra-OTS) dramatically ameliorate CAR T anti cancer function
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Robust results from treatment of hematological malignancies
with CAR-T were not replicated to date in solid tumors

* However, despite their great results in hematological malignancies, no
similar efficacy was shown in solid tumors carl H. June and Michel Sadelain. Chimeric
Antigen Receptor Therapy. N Engl J Med 2018.

* The likely reasons for their failure include lack of adequate antigens,
poor trafficking, CAR-T exhaustion, and a hostile tumor
microenvironment. Martinez et al. 2019.

e As a consequence, the major methods for immunotherapy in solid

tumors involve T cell checkpoint blocking and stimulating antibodies
Rotte et al. 2018.



Deciphering the transcriptional network of

the DC/Macrophages/Monocyte lineage
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Characterization of Peritoneal Macrophages

Ghosn et al. (2010) Two physically, functionally, and developmentally
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Peritoneal Macrophages Characterization — Analysis Hierarchy
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Single cell analysis: Macrophages changes during tumor progression
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SCID-Bg mice were injected intra-peritoneally with
human HelLa-CD19-luciferase cells, followed by CD19-CAR T cells.
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SCID-Bg mice were injected intra-peritoneally with human HelLa-CD19-luciferase cells,
followed by CD19-CAR T cells, with or without apoptotic cells (Allocetra-OTS)
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Milk fat globule-EGF-factor 8 (MFG-
E8) was originally identified as a
component of milk fat globules and
is also produced and secreted by
activated macrophages and
specifically binds to PS exposed on
apoptotic cells via COOH-terminal
factor VIIl homologous domains.

When MFG-E8 is engaged by
apoptotic cells, it binds to

a, B3 integrin expressed in
phagocytes via a NH,-terminal EGF-
like domain, and promotes the
phagocytosis of apoptotic cells.

MFG-E8 mutant protein, D89E
carrying a mutation in the RGD
sequence, masks PS on apoptotic
cells and specifically avoids their
clearance and interactions with
macrophages.

S Nagata et al.



SCID-Bg mice were injected intra-peritoneally with human HelLa-CD19-luciferase cells,
followed by CD19-CAR T cells, with or without apoptotic cells (Allocetra-OTS), or opsonized
apoptotic cells (D89E_Allocetra-OTS) that avoids clearance of apoptotic cells by resident

macrophages
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summary

* Mice survived 3015 days, and mock treatment non significantly
ameliorated their survival to 3414 days.

* CART cell therapy significantly (p<0.001) ameliorated their survival to
55111 days.

* Apoptotic cells injected during tumor progression were able to stabilize the
presence of macrophages as confirmed by single cell and flow cytometry
analysis and synergize with the anti-tumor CAR-T cell effect, resulting in
significantly increased anti-tumor macrophage population and increased
survival to 75210 days (p<0.01).

* We are now analyzing at the level of single cell, the characterizations of
macrophages during tumor progression and following apoptotic cell
treatment.



